刘军博士、教授、系主任/材料基因组计算工程系
联系方式
办公电话:010-64455618
电子邮箱:lj200321039@163.com or liujun@mail.buct.edu.c
教育背景与工作经历
2017.1-今,教授
2013.7-2016.12,北京化工大学材料科学与工程学院副教授,C类人才海外引进
2011.7-2013.7,美国密西根大学化学工程专业,博士后,导师:美国工程院院士Ronald Gary Larson
2003.9-2011.6,北京化工大学高分子材料科学与工程专业,本硕博连读
主要研究领域:
高分子基纳米复合材料基因工程:高通量计算机模拟、高通量实验与数据库
高导电与高导热高分子纳米复合材料的设计、结构与性能研究
智能高分子纳米复合材料(自修复、形状记忆、自组装)的设计、结构与性能研究
高性能水凝胶与气凝胶高分子复合材料的计算机模拟与实验研究
研究成果:
发表文章80余篇,包括Advanced Functional Materials, Nano Energy, ACS Applied Materials & Interfaces, Journal of Materials Chemistry A, Macromolecules, Macromolecular Rapid Communications, Journal of Chemical Physics等国际权威期刊, 单篇最高他引100余次,他人引用总次数约800次。研究工作被美国物理协会(American Physical Society)、纳米科技网站(nanotechweb)等进行Highlight。受邀分别在Physical Chemistry Chemical Physics与Rubber Chemistry and Technology上撰写长篇综述。受邀在Express Polymer Letters上撰写Editorial Corner。同时受邀在Elsevier 出版的著作Progress in Rubber Nanocomposites 撰写英文一章。此外,相关工作被选为Nano Energy与Journal of Chemical Physics封面论文(cover paper)。获首届中国化工学会颁发的 “中国橡胶科技创新奖”与2016年北京化工大学引进人才首聘期考核优秀,并受邀在美国物理学会APS国际会议、中国化学会2018年软物质理论计算与模拟学术会议、第116期“双清论坛”等做邀请报告。
获奖
2016年12月 2016年北京化工大学引进人才首聘期考核优秀
2016年11月 获得中国化工学会首届“中国橡胶科技创新奖”
2015年09月 获第二届中国国际复合材料科技大会(CCCM-2)优秀论文奖
2010年10月 获得中国石化“英才奖学金”
2010年01月 获得第十六届全国复合材料学术会议优秀论文奖
2009年06月 获得北京化工大学“十大学术之星”称号
2009年05月 获得北京化工大学“优秀研究生(博士生)”称号
2008年11月 获得日本住友橡胶奖学金
2008年04月 获得北京化工大学“优秀研究生(硕士)”称号
在研与完成的科研项目
(1) 动态周期加载下橡胶基体中填料网络结构的演化与力学性能关系的模拟与实验研究,国家自然科学基金面上项目。
(2) 弹性体纳米复合材料Payne效应机制的分子动力学模拟与理论研究,国家自然科学基金青年基金。
(3) 橡胶纳米复合材料多层次多次度网络结构表征,科技部973项目。
(4) 石墨烯-橡胶纳米复合材料的制备及结构-性能关系的分子动力学模拟研究, 北京市教育委员会共建项目建设计划北京市重点实验室建设项目。
(5) 弹性体石墨烯复合材料计算机模拟研究, 北京化工大学C类人才启动资助
(6) 弹性体双固化技术, 道达尔公司
(7) 大型橡胶输送带用自组装修复材料开发, 无锡宝通科技股份有限公司
(8) 超低生热与高抗切割轮胎及3D打印技术研究, 山东玲珑轮胎股份有限公司
(9) 合成橡胶溶聚丁苯在轮胎中的应用, 中策橡胶集团有限公司
(10) 轮胎胎面用树脂的作用机理研究, 彤程集团有限公司
发表论文
[1] Shen JX,Liu J,Li X. Effects of Cross-Link Density and Distribution on Static and Dynamic Properties of Chemically Cross-Linked Polymers [J].Macromolecules,2019,52(1):121-134.
[2] LI F, LIU F, LIU J, et al. Thermo-mechanical coupling analysis of transient temperature and rolling resistance for solid rubber tire: Numerical simulation and experimental verification[J]. Composites Science and Technology, 2018, 167: 404-410.
[3] ZHENG Z, XIA X, ZENG X, et al. Theoretical model of Time-Temperature superposition principle of the Self-Healing kinetics of supramolecular polymer nanocomposites[J]. Macromolecular Rapid Communications, 2018, 39(20, SI): 1800382.
[4] LI F, DUAN X, ZHANG H, et al. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods[J]. Physical Chemistry Chemical Physics, 2018, 20(34): 21822-21831.
[5] ZHANG Z, HOU G, SHEN J, et al. Designing the Slide-Ring polymer network with both good mechanical and damping properties via molecular dynamics simulation[J]. Polymers, 2018, 10(9): 964.
[6] CHEN Y, XU Q, JIN Y, et al. Shear- induced parallel and transverse alignments of cylinders in thin films of diblock copolymers[J]. Soft Matter, 2018, 14(32): 6635-6647.
[7] TAO W, SHEN J, CHEN Y, et al. Strain rate and temperature dependence of the mechanical properties of polymers: A Universal time-temperature superposition principle[J]. Journal of Chemical Physics, 2018, 149(4): 44105.
[8] ZHANG X, LIU J, ZHANG Z, et al. Toughening elastomers using a Mussel-Inspired multiphase design[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23485-23489.
[9] HOU G, TAO W, LIU J, et al. Effect of the structural characteristics of solution styrene-butadiene rubber on the properties of rubber composites[J]. Journal of Applied Polymer Science, 2018, 135(24, SI): 45749.
[10] ZHENG J, HAN D, ZHAO S, et al. Constructing a multiple covalent interface and isolating a dispersed structure in Silica/Rubber nanocomposites with excellent dynamic performance[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19922-19931.
[11] CHEN Y, XU Q, JIN Y, et al. Design of End-to-End assembly of Side-Grafted nanorods in a homopolymer matrix[J]. Macromolecules, 2018, 51(11): 4143-4157.
[12] QIN X, HAN B, LU J, et al. Rational design of advanced elastomer nanocomposites towards extremely energy-saving tires based on macromolecular assembly strategy[J]. NANO Energy, 2018, 48: 180-188.
[13] SHEN J, LI X, ZHANG L, et al. Mechanical and viscoelastic properties of Polymer-Grafted nanorod composites from molecular dynamics simulation[J]. Macromolecules, 2018, 51(7): 2641-2652.
[14] WAN H, SHEN J, GAO N, et al. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks[J]. Soft Matter, 2018, 14(12): 2379-2390.
[15] ZHANG L, WU X, WANG R, et al. Simulation and experimental studies of clay/elastomer nanocomposites[J]. Abstracts of Papers of the American Chemical Society, 2018, 255.
[16] ZHENG Z, LI F, LIU J, et al. Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations[J]. Soft Matter, 2018, 14(7): 1219-1226.
[17] GAO Y, HU F, WU Y, et al. Understanding the structural evolution under the oscillatory shear field to determine the viscoelastic behavior of nanorod filled polymer nanocomposites[J]. Computational Materials Science, 2018, 142: 192-199.
[18] GAO Y, MA R, ZHANG H, et al. Controlling the electrical conductive network formation in nanorod filled polymer nanocomposites by tuning nanorod stiffness[J]. RSC Advances, 2018, 8(53): 30248-30256.
[19] ZHAO X, LI T, HUANG L, et al. Uncovering the rupture mechanism of Carbon nanotube filled cis-1,4-polybutadiene via molecular dynamics simulation[J]. RSC Advances, 2018, 8(49): 27786-27795.
[20] GUO Y, LIU J, LU Y, et al. A combined molecular dynamics simulation and experimental method to study the compatibility between elastomers and resins[J]. RSC Advances, 2018, 8(26): 14401-14413.
[21] LIU J, WAN H, ZHOU H, et al. Formation mechanism of bound rubber in elastomer nanocomposites: a molecular dynamics simulation study[J]. RSC Advances, 2018, 8(23): 13008-13017.
[22] LI Z, LIU J, ZHANG Z, et al. Molecular dynamics simulation of the viscoelasticity of polymer nanocomposites under oscillatory shear: effect of interfacial chemical coupling[J]. RSC Advances, 2018, 8(15): 8141-8151.
[23] GAO Y, HU F, LIU J, et al. Molecular dynamics simulation of the glass transition temperature of fullerene filled cis-1,4-polybutadiene nanocomposites[J]. Chinese Journal of Polymer Science, 2018, 36(1): 119-128.
[24] LIU J, LIU J, WANG S, et al. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability[J]. Journal of Materials Chemistry a, 2017, 5(48): 25660-25671.
[25] HOU G, TAO W, LIU J, et al. Tailoring the dispersion of nanoparticles and the mechanical behavior of polymer nanocomposites by designing the chain architecture[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 32024-32037.
[26] WANG W, ZHANG Z, DAVRIS T, et al. Simulational insights into the mechanical response of prestretched double network filled elastomers[J]. Soft Matter, 2017, 13(45): 8597-8608.
[27] ZHENG Z, HOU G, XIA X, et al. Molecular dynamics simulation study of polymer nanocomposites with controllable dispersion of spherical nanoparticles[J]. Journal of Physical Chemistry B, 2017, 121(43): 10146-10156.
[28] LIU J, WANG Z, ZHANG Z, et al. Self-Assembly of block copolymer chains to promote the dispersion of nanoparticles in polymer nanocomposites[J]. Journal of Physical Chemistry B, 2017, 121(39): 9311-9318.
[29] GUO Y, LIU J, WU Y, et al. Molecular insights into the effect of graphene packing on mechanical behaviors of graphene reinforced cis-1,4-polybutadiene polymer nanocomposites[J]. Physical Chemistry Chemical Physics, 2017, 19(33): 22417-22433.
[30] GAO Y, WU Y, LIU J, et al. Effect of chain structure on the glass transition temperature and viscoelastic property of cis-1,4-polybutadiene via molecular simulation[J]. Journal of Polymer Science Part B-POLYMER Physics, 2017, 55(13): 1005-1016.
[31] WANG W, HOU G, ZHENG Z, et al. Designing polymer nanocomposites with a semi-interpenetrating or interpenetrating network structure: toward enhanced mechanical properties[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 15808-15820.
[32] QIAO H, CHAO M, HUI D, et al. Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent[J]. Composites Part B-ENGINEERING, 2017, 114: 356-364.
[33] QIAO H, XU W, CHAO M, et al. Preparation and performance of Silica/Epoxy Group-Functionalized biobased elastomer nanocomposite[J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 881-889.
[34] SHEN J, LI X, SHEN X, et al. Insight into the Dispersion Mechanism of Polymer-Grafted Nanorods in Polymer Nanocomposites: A Molecular Dynamics Simulation Study[J]. Macromolecules, 2017, 50(2): 687-699.
[35] CHEN Y, LIU J, LIU L, et al. Tailoring the alignment of string-like nanoparticle assemblies in a functionalized polymer matrix via steady shear[J]. RSC Advances, 2017, 7(15): 8898-8907.
[36] LU Y, LIU J, HOU G, et al. From nano to giant? Designing Carbon nanotubes for rubber reinforcement and their applications for high performance tires[J]. Composites Science and Technology, 2016, 137: 94-101.
[37] WANG L, LIU H, LI F, et al. Stress-strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation[J]. Physical Chemistry Chemical Physics, 2016, 18(39): 27232-27244.
[38] LIU J, ZHENG Z, LI F, et al. Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile[J]. NANO Energy, 2016, 28: 87-96.
[39] LI F, LIU J, YANG H, et al. Numerical simulation and experimental verification of heat build-up for rubber compounds[J]. Polymer, 2016, 101: 199-207.
[40] GAO Y, CAO D, WU Y, et al. Controlling the conductive network formation of polymer nanocomposites filled with nanorods through the electric field[J]. Polymer, 2016, 101: 395-405.
[41] ZHENG Z, LI F, LIU H, et al. Tuning the structure and mechanical property of polymer nanocomposites by employing anisotropic nanoparticles as netpoints[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25090-25099.
[42] WANG Z, ZHENG Z, LIU J, et al. Tuning the mechanical properties of polymer nanocomposites filled with grafted nanoparticles by varying the grafted chain length and flexibility[J]. Polymers, 2016, 8(9): 270.
[43] ZHENG Z, LIU H, SHEN J, et al. Tailoring the static and dynamic mechanical properties of Tri-Block copolymers through molecular dynamics simulation[J]. Polymers, 2016, 8(9): 335.
[44] WANG L, ZHENG Z, DAVRIS T, et al. Influence of morphology on the mechanical properties of polymer nanocomposites filled with uniform or patchy nanoparticles[J]. Langmuir, 2016, 32(33): 8473-8483.
[45] YANG Z, LIU J, LIAO R, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites[J]. Composites Science and Technology, 2016, 132: 68-75.
[46] LIU J, SHEN J, CAO D, et al. Computer simulation of dispersion and interface in polymer nanocomposites[J]. ACTA Polymerica Sinica, 2016(8): 1048-1061.
[47] ZHENG Z, WANG Z, WANG L, et al. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation[J]. Nanotechnology, 2016, 27(26): 265704.
[48] WANG L, WANG W, FU Y, et al. Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly[J]. Composites Part B-ENGINEERING, 2016, 90: 457-464.
[49] GAO Y, WU Y, LIU J, et al. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization[J]. Soft Matter, 2016, 12(48): 9738-9748.
[50] ZHENG Z, SHEN J, LIU J, et al. Tuning the visco-elasticity of elastomeric polymer materials via flexible nanoparticles: insights from molecular dynamics simulation[J]. RSC Advances, 2016, 6(34): 28666-28678.
[51] GAO Y, CAO D, WU Y, et al. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation[J]. Soft Matter, 2016, 12(12): 3074-3083.